Exercice 1

- 1. On considère la suite u définie pour tout entier naturel n, par la formule explicite $u_n = \frac{7}{3+n}$.
 - **a.** Donner des expressions de u_0 , u_1 et u_4 sous forme de fractions irréductibles.
 - **b.** Pour quel entier naturel n, a-t-on $u_n = \frac{1}{3}$?
 - **c.** Déterminer l'ensemble des entiers naturels tels que $u_n < \frac{1}{2}$.
 - **d.** Existe-t-il un entier naturel n tel que $u_n = 0$.
- **2.** On considère la suite v définie par récurrence par $v_0 = 65$ et pour tout entier naturel n, $v_{n+1} = 0$, $8v_n + 18$.
 - **a.** Calculer v_1 et v_2 .
 - **b.** Déterminer avec la calculatrice des valeurs approchées de v_{10} et v_{20} . Quelle conjecture peut-on faire sur les valeurs de v_n lorsque n devient de plus en plus grand.

Exercice 2

On considère la suite $(v_n)_{n\geq 0}$ définie pour tout entier $n\geq 0$ par :

$$\begin{cases} v_0 = 1 \\ \text{pour tout entier } n \ge 0 \ v_{n+1} = -3v_n + 2n^2 - n \end{cases}$$

- **1.** Calculer v_1 et v_2 .
- **2.** Avec la calculatrice, déterminer la valeur exacte de v_{10} .
- **3.** Compléter la fonction Python ci-dessous pour quelle renvoie la liste des n+1 premiers termes de $(v_n)_{n\geqslant 0}$, de v_0 à v_n .

Exercice 3

Afin de conserver au fil des années un parc en bon état, un loueur de vélos se sépare chaque hiver de 20 % de son stock et achète ensuite 35 nouveaux vélos.

On modélise la situation par une suite (u_n) où, pour tout entier naturel n, u_n représente le nombre de vélos présents dans le stock de ce loueur au 1^{er} juillet de l'année (2018 + n).

Au 1^{er} juillet 2018, le loueur possède 150 vélos, ainsi $u_0 = 150$.

- 1. **a.** Déterminer le nombre de vélos dans le stock du loueur au 1^{er} juillet 2019.
 - **b.** Justifier que, pour tout entier naturel n, on a : $u_{n+1} = 0.8u_n + 35$.
- 2. On a calculé les premiers termes de cette suite à l'aide d'un tableur.

Une copie d'écran est donnée ci-dessous :

	A	В
1	rang <i>n</i>	terme u_n
2	0	150
3	1	155
4	2	159
5	3	162,2

- **a.** Quelle formule peut-on saisir dans la cellule B3 pour obtenir, par copie vers le bas, les termes successifs de la suite (u_n) ?
- **b.** Pour les termes de rang 36, 37, 38, 39 et 40, on obtient les résultats suivants (arrondis au millième) :

38	36	174,992
39	37	174,994
40	38	174,995
41	39	174,996
42	40	174,997

Quelle conjecture peut-on faire sur l'évolution du nombre de vélos présents dans le stock du loueur s'il poursuit son activité jusqu'à sa retraite . . .

c. Compléter le programme Python ci-dessous pour qu'il renvoie le nombre d'années au bout duquel le nombre de vélos dans le stock dépassera 170.

```
def seuil():
u = 150
n = 0
while u ..... 170:
    u = .......
    n = .......
return n
```

___ Exercice 4 _

On considère la suite (u_n) définie par $\begin{cases} u_0 = 1 \\ u_n = u_{n-1} + 10^{-n} \text{ pour tout entier } n \geqslant 1 \end{cases}$

- 1. Déterminer les valeurs décimales exactes de u_1 et u_2 .
- 2. Soit n un entier supérieur ou égal à 2, exprimer en fonction de n les valeurs de $u_n u_{n-1}$ et $u_{n-1} u_{n-2}$. En déduire l'expression de $u_n - u_{n-2}$ en fonction de n.
- **3.** Soit n un entier supérieur ou égal à 3, exprimer en fonction de n la valeur de $u_{n-2} u_{n-3}$. En déduire que $u_n u_{n-3} = 10^{-n} + 10^{-(n-1)} + 10^{-(n-2)}$.
- **4.** Soit n un entier naturel, justifier que $u_n u_0 = 10^{-n} + 10^{-(n-1)} + ... + 10^{-k} + ... + 10^{-1}$ En déduire l'écriture décimale de u_n .