

Exercice 1

Maya possède 20 € dans sa tirelire au 1er juin 2018.

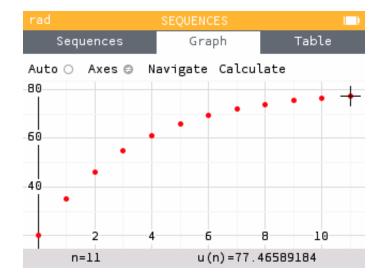
À partir de cette date, chaque mois elle dépense un quart du contenu de sa tirelire puis y place 20 € supplémentaires.

Pour tout entier naturel n, on note u_n la somme d'argent contenue dans la tirelire de Maya à la fin du n-ième mois. On a $u_0 = 20$.

- 1. Vérifier que la somme d'argent contenue dans la tirelire de Maya à la fin du 1^{er} mois est de 35 €.
- **2.** Avec le mode suite de la calculatrice, calculer u_9 au centime près. Interpréter le résultat.
- **3.** On admet que pour tout entier naturel n, $u_{n+1} = 0.75u_n + 20$.

Compléter la fonction Python ci-dessous pour qu'elle renvoie le nombre de mois que Maya doit attendre avant d'avoir plus de 70 euros dans sa tirelire.

- **4.** Pour tout entier n, on pose $v_n = u_n 80$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique de raison 0,75.
 - **b.** Préciser son premier terme v_0 .
 - **c.** En déduire que, pour tout entier naturel n, on a $u_n = 80 60 \times 0.75^n$.
 - **d.** On a représenté ci-dessous un nuage de points des premiers termes de la suite (u_n) . Déterminer le sens de variation de la suite (u_n) . Justifier.
 - **e.** Conjecturer la limite de la suite (u_n) et interpréter le résultat dans le contexte de l'exercice.



Exercice 2

Soit (u_n) la suite définie par $u_0 = 1$ et pour tout entier naturel n:

$$u_{n+1} = \frac{u_n}{u_n + e^{u_n}}$$

- 1. a. Calculer u_1 .
 - **b.** Compléter la fonction Python liste_termes (k) ci-dessous qui prend en paramètre un entier naturel k et renvoie la liste des premiers termes de la suite (u_n) de u_0 à u_k .

```
from math import exp

def liste_termes(k):
    u = 1
    L = [u]
    for i in range(k):
        u = ......
        L.append(u)
    return ......
```

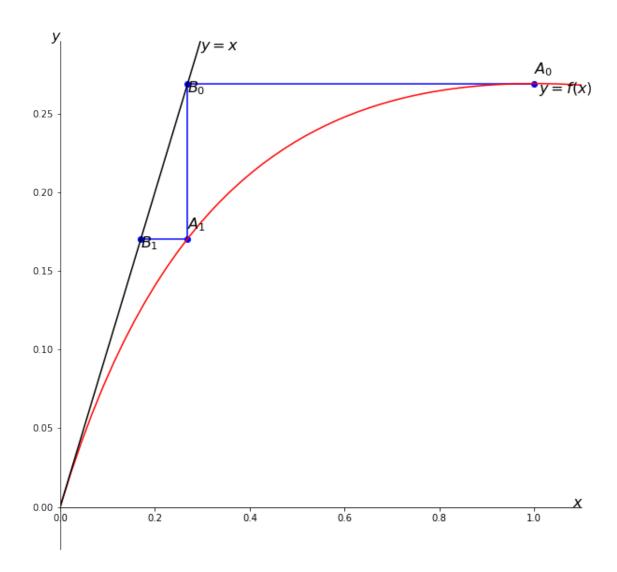
- **2.** On admet que, pour tout entier naturel n, u_n est strictement positif.
 - **a.** Démontrer que pour tout entier naturel n, on a $1 < u_n + e^{u_n}$.
 - **b.** En déduire le sens de variation de la suite (u_n) .
- 3. Soit f la fonction définie sur]0; $+\infty[$ par $f(x) = \frac{x}{x + e^x}.$

On peut reformuler ainsi la définition de la suite (u_n) :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \text{ pour tout entier } n \ge 0 \end{cases}$$

Sur le graphique ci-dessous, on a représenté :

- la droite d'équation y = x;
- la courbe d'équation y = f(x).
- les points :
 - A_0 de coordonnées $(u_0; u_1)$ et B_0 de coordonnées $(u_1; u_1)$;
 - A_1 de coordonnées $(u_1; u_2)$ et B_1 de coordonnées $(u_2; u_2)$.



- **a.** À partir des points déjà représentés, construire les termes u_0 , u_1 et u_2 sur l'axe des abscisses en laissant apparents les traits de construction.
- **b.** Compléter le graphique pour construire avec la même méthode les termes u_3 , u_4 et u_5 sur l'axe des abscisses.
- **c.** Peut-on conjecturer que la suite (u_n) converge? Justifier.

Préparation du DS n°12, évaluation sommative

Première

Exercice 3

On considère la fonction f définie sur l'intervalle [-1; 10] par :

$$f(x) = (10x + 1)e^{-x}$$

On admet que f est dérivable sur l'intervalle [-1; 10]. On note \mathscr{C}_f la courbe de f dans un repère du plan.

- 1. Déterminer une équation de la tangente à \mathcal{C}_f au point d'abscisse 0.
- **2. a.** Démontrer que pour tout réel $x \in [-1; 10]$, on a $f'(x) = (9-10x)e^{-x}$.
 - **b.** Étudier le signe de f' sur l'intervalle [-1; 10].
 - **c.** En déduire le tableau de variations de la fonction f sur l'intervalle [-1; 10].
 - **d.** Pour quelle valeur de x la fonction f admet-elle un maximum? Quelle est la valeur de ce maximum? (on arrondira à l'unité).